Back to AI Lab
HuggingFace Paper

StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space

Tjark Behrens, Anton Obukhov, Bingxin Ke +3December 11, 2025

Summary

StereoSpace is a diffusion-based monocular-to-stereo system that learns geometric consistency purely from viewpoint conditioning, without explicitly predicting depth or doing warping. The authors also propose a strictly "geometry-free at test time" evaluation protocol and show their method produces sharper parallax and more comfortable stereo than existing depth- or warp-based pipelines.

Related Content

stable-diffusion-webui

stable-diffusion-webui by AUTOMATIC1111 is the de facto standard local web interface for Stable Diffusion, providing a massive feature set—txt2img, img2img, inpainting/outpainting, upscaling, LoRA/embeddings support, training utilities, and a huge extension ecosystem—on top of consumer GPUs. If you’re doing any kind of image generation or fine-tuning with Stable Diffusion in a local or lab environment, this is usually the first tool people reach for and the one most community workflows target. ([github.com](https://github.com/AUTOMATIC1111/stable-diffusion-webui?utm_source=openai))

Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation

This paper is a systematic exploration of reinforcement learning for text-to-3D generation, dissecting reward design, RL algorithms, data scaling, and hierarchical optimization. The authors introduce a new benchmark (MME-3DR), propose Hi-GRPO for global-to-local 3D refinement, and build AR3D-R1—the first RL-tuned text-to-3D model that improves both global shape quality and fine-grained texture alignment.

OPV: Outcome-based Process Verifier for Efficient Long Chain-of-Thought Verification

OPV (Outcome-based Process Verifier) is a verifier model that inspects the rationale steps of long chains-of-thought via summarized outcomes, combining the strengths of outcome-based and process-based verification. Trained with an active learning loop, rejection fine-tuning, and RLVR, OPV reaches strong F1 on OPV-Bench and outperforms much larger models like Qwen3-Max-Preview at detecting reasoning errors.

Long-horizon Reasoning Agent for Olympiad-Level Mathematical Problem Solving

This work presents a long-horizon reasoning agent for Olympiad-level math that uses an Outcome-based Process Verifier (OPV) to supervise and clean up very long chains-of-thought. By summarizing and checking reasoning segments rather than only final answers, and training OPV via iterative active learning and RLVR, the system achieves new SOTA on a held-out benchmark while reducing annotation cost.