Back to AI Lab
HuggingFace Paper

Memory in the Age of AI Agents

Yuyang Hu, Shichun Liu, Yanwei Yue +2December 16, 2025

Summary

A substantial survey that systematizes the fast-growing literature on ‘agent memory’—how agentic LLM systems store, retrieve, and evolve information over time. It proposes a taxonomy across forms (token, parametric, latent), functions (factual, experiential, working) and dynamics, and catalogs existing benchmarks and frameworks. If you’re building agent systems with nontrivial memory, this is quickly becoming the reference map of the territory.

Related Content

Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation

This paper is a systematic exploration of reinforcement learning for text-to-3D generation, dissecting reward design, RL algorithms, data scaling, and hierarchical optimization. The authors introduce a new benchmark (MME-3DR), propose Hi-GRPO for global-to-local 3D refinement, and build AR3D-R1—the first RL-tuned text-to-3D model that improves both global shape quality and fine-grained texture alignment.

OPV: Outcome-based Process Verifier for Efficient Long Chain-of-Thought Verification

OPV (Outcome-based Process Verifier) is a verifier model that inspects the rationale steps of long chains-of-thought via summarized outcomes, combining the strengths of outcome-based and process-based verification. Trained with an active learning loop, rejection fine-tuning, and RLVR, OPV reaches strong F1 on OPV-Bench and outperforms much larger models like Qwen3-Max-Preview at detecting reasoning errors.

Long-horizon Reasoning Agent for Olympiad-Level Mathematical Problem Solving

This work presents a long-horizon reasoning agent for Olympiad-level math that uses an Outcome-based Process Verifier (OPV) to supervise and clean up very long chains-of-thought. By summarizing and checking reasoning segments rather than only final answers, and training OPV via iterative active learning and RLVR, the system achieves new SOTA on a held-out benchmark while reducing annotation cost.

T-pro 2.0: An Efficient Russian Hybrid-Reasoning Model and Playground

T-pro 2.0 is an open-weight Russian large language model focused on hybrid reasoning: it can answer directly or emit explicit reasoning traces, and it’s optimized for low-latency inference via speculative decoding. Alongside the model, the authors release a Russian instruction corpus, a math benchmark, and an EAGLE-based inference stack, making it a practical foundation for Russian-language reasoning applications.