Back to AI Lab
Technical Article

TensorStore for High-Performance, Scalable Array Storage

Google AI BlogSeptember 22, 2022

Summary

TensorStore is an open-source C++ and Python library for working with massive n‑dimensional arrays, providing a uniform API over formats like Zarr and N5 and backends like GCS, local filesystems, HTTP, and in‑memory storage, with ACID transactions and async I/O. For ML and scientific developers, it’s a practical way to manage petascale datasets and large model checkpoints (e.g., PaLM) without custom sharding logic, while keeping read/write concurrency and performance under control. ([ai.googleblog.com](https://ai.googleblog.com/2022/09/tensorstore-for-high-performance.html))

Related Content

stable-diffusion-webui

stable-diffusion-webui by AUTOMATIC1111 is the de facto standard local web interface for Stable Diffusion, providing a massive feature set—txt2img, img2img, inpainting/outpainting, upscaling, LoRA/embeddings support, training utilities, and a huge extension ecosystem—on top of consumer GPUs. If you’re doing any kind of image generation or fine-tuning with Stable Diffusion in a local or lab environment, this is usually the first tool people reach for and the one most community workflows target. ([github.com](https://github.com/AUTOMATIC1111/stable-diffusion-webui?utm_source=openai))

SynthID Detector: Identify content made with Google's AI tools

Google announces SynthID Detector, a web portal that lets you upload images, audio, video, or text generated with Google AI tools and automatically checks for imperceptible SynthID watermarks, highlighting which parts of the content are likely watermarked. For developers and media teams, it’s a turnkey authenticity check for content produced with models like Gemini, Imagen, Lyria, and Veo, designed to plug into editorial and trust-&-safety workflows. ([blog.google](https://blog.google/technology/ai/google-synthid-ai-content-detector/))

The new ChatGPT Images is here

OpenAI announces a new image generation model powering ChatGPT’s ‘Images’ experience, with a focus on more precise edits, better consistency across parts of an image, and finer control over style. The post walks through examples like detailed object editing and iterative refinement inside the chat UI, positioning images as a first-class modality alongside text and code. For developers, it signals that OpenAI’s flagship image stack is now accessible through a very productized, user-facing interface.

daytona

Daytona is a secure, elastic runtime for executing AI-generated code and agent workflows in isolated sandboxes, with Python and TypeScript SDKs to spin up environments in sub‑100ms and run arbitrary code, processes, or dev tools. It’s quickly becoming a go-to “agent runtime” layer for teams that need safe, persistent, and massively parallel sandboxes (including LangChain’s open-source coding agent), instead of gluing together ad‑hoc Docker or VM setups. ([github.com](https://github.com/daytonaio/daytona?utm_source=openai))