Back to AI Lab
Technical Article

RO-ViT: Region-aware pre-training for open-vocabulary ...

Google AI BlogAugust 28, 2023

Summary

RO‑ViT proposes a region-aware pretraining scheme for vision transformers that uses cropped positional embeddings and focal loss to better align image–text pretraining with region-level object detection. Developers building open‑vocabulary detectors can reuse these ideas—plus the released code—to boost novel‑class detection without changing model capacity, especially when fine‑tuning ViT backbones on detection datasets. ([ai.googleblog.com](https://ai.googleblog.com/2023/08/ro-vit-region-aware-pre-training-for.html))

Related Content

stable-diffusion-webui

stable-diffusion-webui by AUTOMATIC1111 is the de facto standard local web interface for Stable Diffusion, providing a massive feature set—txt2img, img2img, inpainting/outpainting, upscaling, LoRA/embeddings support, training utilities, and a huge extension ecosystem—on top of consumer GPUs. If you’re doing any kind of image generation or fine-tuning with Stable Diffusion in a local or lab environment, this is usually the first tool people reach for and the one most community workflows target. ([github.com](https://github.com/AUTOMATIC1111/stable-diffusion-webui?utm_source=openai))

Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation

This paper is a systematic exploration of reinforcement learning for text-to-3D generation, dissecting reward design, RL algorithms, data scaling, and hierarchical optimization. The authors introduce a new benchmark (MME-3DR), propose Hi-GRPO for global-to-local 3D refinement, and build AR3D-R1—the first RL-tuned text-to-3D model that improves both global shape quality and fine-grained texture alignment.

T-pro 2.0: An Efficient Russian Hybrid-Reasoning Model and Playground

T-pro 2.0 is an open-weight Russian large language model focused on hybrid reasoning: it can answer directly or emit explicit reasoning traces, and it’s optimized for low-latency inference via speculative decoding. Alongside the model, the authors release a Russian instruction corpus, a math benchmark, and an EAGLE-based inference stack, making it a practical foundation for Russian-language reasoning applications.

SynthID Detector: Identify content made with Google's AI tools

Google announces SynthID Detector, a web portal that lets you upload images, audio, video, or text generated with Google AI tools and automatically checks for imperceptible SynthID watermarks, highlighting which parts of the content are likely watermarked. For developers and media teams, it’s a turnkey authenticity check for content produced with models like Gemini, Imagen, Lyria, and Veo, designed to plug into editorial and trust-&-safety workflows. ([blog.google](https://blog.google/technology/ai/google-synthid-ai-content-detector/))